【簡(jiǎn)介】
熱障涂層陶瓷材料的研究現(xiàn)狀與展望
李志明,錢(qián)士強(qiáng),王偉
(上海工程技術(shù)大學(xué)材料工程學(xué)院,上海201620)
[摘要] 目前主要研究的熱障涂層陶瓷材料分為氧化物穩(wěn)定的Zr02、鈣鈦礦結(jié)構(gòu)ABO3陶瓷、焦綠石或螢石結(jié)構(gòu)A2B207陶瓷、磁鐵鉛礦結(jié)構(gòu)MMeAl11O19陶瓷及其他先進(jìn)陶瓷材料5大類。概述了各類材料的研究進(jìn)展,對(duì)熱障涂層陶瓷材料今后的發(fā)展方向進(jìn)行了探討,認(rèn)為氧化物穩(wěn)定的Zr0:在熱障涂層中的應(yīng)用地位必將被使用溫度更高的新型陶瓷材料所替代。
[關(guān)鍵詞] 熱障涂層;穩(wěn)定Zr02; A2B207陶瓷;MMeAl11O19陶瓷;抗高溫;隔熱
[中圖分類號(hào)] TG174.45 [文獻(xiàn)標(biāo)識(shí)碼]A [文章編號(hào)]1001 - 1560( 2011) 01 - 0038 - 04
O前言
目前,高溫合金材料已無(wú)法滿足現(xiàn)代渦輪發(fā)動(dòng)機(jī)對(duì)高進(jìn)口溫度的要求[1],金屬部件(如燃燒室內(nèi)壁、渦輪葉片等)上需制備熱障涂層,以承受更高的溫度,同時(shí)提高發(fā)動(dòng)機(jī)的使用壽命和效率[2]。
熱障涂層具有隔熱、抗高溫氧化和耐腐蝕等作用,其典型結(jié)構(gòu)為雙層系統(tǒng),由表層的陶瓷熱障層和中間的金屬粘結(jié)層構(gòu)成。在熱障涂層中實(shí)際起隔熱作用的是陶瓷熱障層,它能有效減少向金屬基體的熱傳導(dǎo),保護(hù)關(guān)鍵零部件。合適的熱障涂層陶瓷材料應(yīng)滿足高熔點(diǎn)、低熱導(dǎo)率、熱膨脹系數(shù)與金屬基體較匹配、低燒結(jié)速率、良好的高溫化學(xué)穩(wěn)定性、與金屬層結(jié)合力高、在室溫與工作溫度之間無(wú)相變等要求[3]。
氧化物穩(wěn)定的Zr02是目前應(yīng)用最為廣泛的熱障涂層陶瓷材料,鈣鈦礦結(jié)構(gòu)的ABO3陶瓷和焦綠石或螢石結(jié)構(gòu)的A2B207陶瓷也不斷受到關(guān)注;此外,新型磁鐵鉛礦結(jié)構(gòu)的MMeAl11O19陶瓷及其他先進(jìn)陶瓷材料也開(kāi)始得到重視。如下綜述了目前國(guó)內(nèi)外熱障涂層陶瓷材料的研究現(xiàn)狀,介紹了最新的先進(jìn)熱障涂層陶瓷材料并探討了其今后的發(fā)展趨勢(shì)。
15類熱障陶瓷涂料研究近況
1.1 氧化物穩(wěn)定的Zr02
氧化物穩(wěn)定Zr02具有較低的熱導(dǎo)率、較高的熱膨脹系數(shù)和良好的高溫性能[4],很長(zhǎng)一段時(shí)期內(nèi)充當(dāng)著主要的熱障涂層陶瓷材料。用于穩(wěn)定Zr02的氧化物種類繁多,二價(jià)穩(wěn)定劑有Ca0和MgO[5]等,三價(jià)穩(wěn)定劑有Y203[6],Sm203[7],Nd203[8],Er203[9]等,四價(jià)穩(wěn)定劑有Ce02 [10],Hf02[11]等。其中,Y203是Zr02最常用的穩(wěn)定劑,完全致密質(zhì)量分?jǐn)?shù)為7%的Y203 - Zr02陶瓷的熱導(dǎo)率室溫時(shí)為3.0 W/(m·℃),在
氧化物穩(wěn)定的Zr02可以滿足
的溫度[15]。為此,需尋求新的陶瓷材料應(yīng)用于熱障涂層,氧化物穩(wěn)定的2r02熱障陶瓷材料面臨嚴(yán)峻的挑戰(zhàn)。
1.2鈣鈦礦結(jié)構(gòu)AB03陶瓷
鈣鈦礦結(jié)構(gòu)的ABO3陶瓷中,早期有SrZr03 [
另外,還有一類新開(kāi)發(fā)用于熱障涂層中的鈣鈦礦陶瓷是BaLn2Ti3010(Ln為La,Sm,Nd,Pr中的一種或多種組合),為層狀鈣鈦礦結(jié)構(gòu),熱導(dǎo)率低并具有良好的燒結(jié)阻力。采用BaC03,Ti02,La203在
1.3焦綠石或螢石結(jié)構(gòu)A2B207陶瓷
A2B207(A為稀土元素,B為Zr,Hf,Ce等元素)陶瓷材料具有比Zr02材料更低的熱導(dǎo)率,相當(dāng)?shù)臒崤蛎浵禂?shù)及良好的高溫相穩(wěn)定性能,被認(rèn)為是最有希望替代Zr02的材料體系。目前,對(duì)該材料體系的研究主要集中在La2Zr0207[23],Gd2Zr207[24],Nd2Zr207[25],La2 Ce207[26,27], Eu2Zr207[26],DY2Zr207[28], Sm2Zr207[29]等的熱物理性能方面。其中,La2Zr0207的研究相對(duì)較多[30,31],其晶格內(nèi)部由Zr06八面體構(gòu)成大的網(wǎng)狀結(jié)構(gòu),la3+填充在由六個(gè)Zr06構(gòu)成的八面體孔隙中,在滿足電中性的條件下,LA3+和Zr4+可以被具有相近離子半徑的其他離子替代。La2Zr207作為熱障涂層陶瓷材料應(yīng)用的主要不足之處是其熱膨脹系數(shù)較低[30],制備成涂層時(shí)在高溫?zé)嵫h(huán)下易剝落。由于Ce02具有較大的熱膨脹系數(shù)(1.3×10
1.4磁鐵鉛礦結(jié)構(gòu)MMeAL11019陶瓷
磁鐵鉛礦結(jié)構(gòu)的六鋁酸鹽MMeAL11019(M為La,Nd,Sr等元素,Me為堿土金屬元素等)陶瓷顯微結(jié)構(gòu)由隨機(jī)排列的片層組成,是較晚開(kāi)發(fā)的用于高溫下能保持長(zhǎng)期良好的結(jié)構(gòu)和熱穩(wěn)定性的熱障涂層,具有遠(yuǎn)低于Zr02基熱障涂層材料的燒結(jié)速率[34],存在較多的微孔,有良好的熱絕緣效果。用于熱障涂層的MMeAL11019陶瓷,研究相對(duì)較早、較多的是鎂基六鋁酸鑭(MMeAL11019,簡(jiǎn)稱LMA),等離子噴涂制備的LMA熱障涂層完全可以替代氧化物穩(wěn)定的Zr02而應(yīng)用于使用溫度更高的熱障涂層[34,35]。近年來(lái),MMeAL11019陶瓷用于熱障涂層越來(lái)越受到關(guān)注。采用固相反應(yīng)法合成了LMA陶瓷,對(duì)其LMA熱障涂層進(jìn)行了激光重熔處理研究[36,37]。采用固相法制備了可應(yīng)用于大氣等離子噴涂的鎂基六鋁酸鑭噴涂粉末,在
1.5其他熱障涂層陶瓷材料
除上述已成體系的熱障涂層陶瓷材料外,還開(kāi)發(fā)了其他具有熱障涂層應(yīng)用前景的陶瓷材料。釔鋁石榴石(Y3Al5012,簡(jiǎn)稱YAG)也是一種良好的熱障涂層材料,屬石榴石結(jié)構(gòu),其從室溫至熔點(diǎn)(
2 5類熱障涂層陶瓷材料的研究展望
氧化物穩(wěn)定的ZrO2因有限的高溫服役能力而無(wú)法滿足新一代渦輪發(fā)動(dòng)機(jī)的需要。隨著對(duì)鈣鈦礦結(jié)構(gòu)的AB03陶瓷、焦綠石或螢石結(jié)構(gòu)的A2B207陶瓷、磁鐵鉛礦結(jié)構(gòu)的MMeAL11019陶瓷及其他先進(jìn)陶瓷材料研究的深入,這些新型的熱障材料將有可能替代氧化物穩(wěn)定的Zr02應(yīng)用于熱障涂層系統(tǒng)中并帶動(dòng)高溫部件系統(tǒng)一次新的飛躍。然而,目前存在的問(wèn)題還很多,如新型熱障涂層陶瓷材料研究不夠成熟、其與金屬粘結(jié)層及金屬基體的匹配問(wèn)題尚無(wú)充分的研究數(shù)據(jù)等。因此,大量的相關(guān)研究亟待進(jìn)行,其重點(diǎn)有以下幾方面:
(1)對(duì)于氧化物穩(wěn)定的Zr02,粉體的制備技術(shù)和理論研究已較成熟,今后主要是對(duì)涂層制備工藝的優(yōu)化以及涂層結(jié)構(gòu)設(shè)計(jì)等的創(chuàng)新研究;
(2)探索新型熱障涂層陶瓷材料高純度粉體的最佳制備工藝,研究各新型材料的熱導(dǎo)率、熱膨脹系數(shù)等隨溫度的變化規(guī)律,優(yōu)化對(duì)應(yīng)材料的涂層制備技術(shù),以獲得高性能的新型熱障涂層;
(3)根據(jù)新型熱障涂層陶瓷材料與氧化物穩(wěn)定Zr02材料的熱物理性能,開(kāi)展雙層陶瓷層、多層陶瓷層或者設(shè)計(jì)梯度涂層結(jié)構(gòu)的研究,減少涂層系統(tǒng)在高溫下的熱失配,提高涂層服役壽命;
(4)系統(tǒng)研究不同新型熱障涂層陶瓷材料與金屬粘結(jié)層的結(jié)合問(wèn)題及新型陶瓷熱障涂層高溫工況下有別于傳統(tǒng)YSZ涂層的失效行為;
(5)采用高能束表面處理技術(shù)(如激光重熔等)對(duì)新型熱障涂層進(jìn)行表面修飾,以優(yōu)化涂層的組織結(jié)構(gòu),提高涂層高溫性能;
(6)結(jié)合計(jì)算機(jī)軟件對(duì)新型陶瓷熱障涂層隔熱性能、應(yīng)力狀態(tài)、熱循環(huán)壽命、失效機(jī)理等進(jìn)行模擬計(jì)算,推動(dòng)新型熱障涂層陶瓷材料的實(shí)際應(yīng)用。
[參考文獻(xiàn)]
[1]Perepezko J H.The Hotter the Engine,the Better[J]. Science,2009,326(5956):1068~1069.
[2]Padture N P,Gell M, Jordan E H.Thermal Barrier Coat-ings for Gas - Turbine Engine Applications[ J]. Science,2002,296(5566): 280~84.
[3]
[4]Guo S, Kagawa Y. Effect of thermal exposure on hardnessand Youngs modulus of EB - PVD yttria - partially - stabilizedzirconia thermal barrier coatings[J]. Ceramics Intemation-al,2006,32(3) : 263~270.
[5]Miller R A. Thermal barrier coatings for aircraft ery;ines:history and directions [ J ].Joumal of Thermal Spray Technology,1997,6(1) : 35~42.
[6]Xie L, Ma X, Jordan E H, et al. Deposition mechanisms ofthermal barrier coatings in the solution precursor plasmaspray process[ J] . Surface and Coatings Technology,2004,177 ~ 178 : 103~107.
[7]Khor K A, Yang J. Plasma sprayed Zr02-Sn203 coatings: lattice parameters, tetraS;onality (c/a) and transformabilityof tetragonal zirconia phase[ J] . Joumal of Materials ScienceLetters,1997,16: 1002~1004.
[8]Khor K A, Yang J. Rapidly solidified neodymia-stabilisedzirconia coatings prepared by DC plasma spraying[J]. Sur-face and Coatings Technology,1997,96( 2/3) : 313~322.
[9] Ridruejo A, Pastor J Y, Llorca J, et al. Stress CorrosionCracking of Single - Crystal Tetragonal 2r02 ( Er203 ) [ J ].Joumal of the American Ceramic Society,2005,88 ( Il) :3125~3130.
[10] Lee J K, Kang H H. Ceria-stabilized zirconia ceramics withirregular grain shapes [J] . Materials Letters ,2000,42 ( 4) :215~220.
[11]Singh J, Wolfe D E, Miller R A, et al. Tailored microstruc-ture of zirconia and hafnia - based thermal barrier coatiW;swith low thermal conductivity and high hemispherical reflec-tance by EB - PVD [J] . Joumal of Materials Science,2004,39(6) : 1975~1985.
[12]Choi H, Kim H, Lee C. Phase evolutions of plasma sprayedceria and yttria stabilized zirconia thermal barrier coating[J]. Joumal of Materials Science Letters,2002,21 ( 17) :1359~1361.
[13]Liu Y, Gao Y F, Tao S Y, et al. La103-modified YSZ coat-ings: high-temperature stability and improved thermal barri-er properties[Jl. Surface and Coatings Technology,2009,203(8) : 1014~1019.
[14]Matsumoto M, Kato T, Yamaguchi N, et al. Thermal con-ductivity and thermal cycle life of La203 and Hfoz doped Zr02-Y203 coatings produced by EB - PVD[ J]. Surface andCoatings Technology,2009,203(19) : 2835~2840.
[15]Schulz U, Leyens C, Fritscher K, et al. Some recent trendsin research and technology of advanced thermal barrier coat-ings [ J] . Aerospace Science and Technology,2003,7 ( 1) :73~80.
[16]Vassen R,
[17]Yamanaka S, Fujikane M, Hamaguchi T, et al. Thermo-physical properties of Ba2r03 and BaCe03 [J]. Joumal ofAlloys and Compounds,2003,359( 1/2) : 109~113.
[18]Tekmen C, Ozdemir I, Celik E. Failure behaviour of functionally gradient materials under thermal cycling conditions[J]. Surface and Coatings Technology,2003,174~175:1101 N 1105.
[19]Terki R, Bertrand G, Aourag H, et al. Thermal properties ofBal_xSrxZr03 compounds from microscopic theory[ J] . Journalof Alloys and Compounds,2008,456(1/2) : 508~513.
[20]Ma W, Mack D, Malzbender J, et al. Yb203 and Gd203doped strontium zirconate for thermal barrier coatings [ J ] .Joumal of the European Ceramic Society,2008,28 ( 16) :3071~3081.
[21]Ma W, Jarligo M 0, Mack D E, et al. New Generation Perovskite Thermal Barrier Coating Materials [ J ]. Joumal ofThermal Spray Technology,2008,17 ( 5) : 831~837.
[22]Guo H, Zhang H, Ma C, et al. Thermo-physical and thermal cycling propeflies of plasma - sprayed BaLa2Ti3010 coat-ing as potential thermal barrier materials[ J]. Surface andCoatings Technology,2009,204 ( 5) : 691~696.
[23]Zhou H, Yi D, Yu Z, et al. Preparation and thermophysicalproperties of Ce02 doped La22r207 ceramic for thermal bar-ner coatings[Jl. Joumal of Alloys and Compounds,2007,438(1/2) : 217~221.
[24]Wu J, Wei X, Padture N P, et al. Low-thermal-conductivi-ty rare - earth zirconates for potential thermal- barrier- coatingapplications[Jl. Joumal of the American Ceramic Society,2002,85 (12) : 3031~3035.
[25]Lutique S, Konings R, Rondinella V V, et al. The thermalconductivity of Nd2Zr207 pyrochlore and the thermal behav-iour of pyrochlore-based inert matrix fuel[ J] . Joumal of Al-loys and Compounds,2003,352( 1/2) : 1~5.
[26]Yamamura H, Nishino H, Kakinuma K. Ac Conductivity for Eu2Zr207 and La2Ce207 with Pyrochlore-Type Composition[J]. Joumal of the Ceramic Society of Japan,2004,1310( 112 ) :553~558.
[27]Wang Y, Guo H, Gong S. Thermal shock resistance andmechanical properties of La2Ce207 thermal barrier coatingswith segmented structure [ J ]. Ceramics International,2009,35(7) : 2639~2644.
[28]Qiang X, Wei P, Jing D W, et al. Preparation and thermo-physical properties of DY22r207 ceramic for thermal barriercoatings[J]. Materials Letters,2005,59(22) : 2804~28U7.
[29]Sohn J M, Woo S I. The Effect of Chelating Agent on theCatalytic and Structural Properties of Sm2Zr207 as a Methaned Structural Properties of Sm22r207 as a Methane Combustion Catalyst[ J].Catalysis Letters,2002,79(1):45~48.
[30]Xu Z,He L,Mu R, et al.Double-ceramic-layer thermalbarrier coatings of La2Zr207/YSZ deposited by electronbeam-physical vapor deposition[ J]. Joumal of Alloys andCompounds,2009,473( 1/2): 509~515.
[31]Saruhan B,Francois P,Fritscher K, et al.EB-PVD processing of pyrochlore – structured Laz Zr207 - based TBCs[J].Surface and Coatings Technology,2004,182(2/3): 175~183.
[32]Xu Z,He L,Zhao Y, et al.Composition, structure evolu-tion and cyclic oxidation behavior of La2( Zroj Ce0.3 )207EB-PVD TBCs [J]. Joumal of Alloys and Compounds,2010,491(1/2): 729~736.
[33]Bansal N P,Zhu D.Effects of doping on thermal conductiv-ity of pyrochlore oxides for advanced thermal barrier coatings[J]. Materials Science and Engineering: A,2007,459(1/2):192~195.
[34]Friedrich C,Gadow R, Schirmer T.Lanthanum hexaalumi-nate-A new material for atmospheric plasma spraying of ad-vanced thermal barrier coatings[J]. Joumal of ThermalSpray Technology,2001,10(4): 592~598.
[35]Cadow R, Lischka M. Lanthanum hexaaluminate - novelthermal barrier coatings for gas turbine applications - materi-als and process development[ Jl. Surface and CoatingsTechnology,2002,151: 392~399.
[36]Zhang Y,Li Q, Ma X, et al.Synthesis and high-pressuresintering“l(fā)anthanum magnesium hexaaluminate[ J]. Materials Letters,2008,62(6/7): 923~925.
[37]Zhang Y,Wang Y, Jarligo M 0, et al.Laser glazing oflan-thanum magnesium hexaaluminate[J]. Optics and Lasers inEngineering,2008,46(8): 601~603.
[38]齊峰,樊自拴,孫冬柏,等.新型熱障涂層材料鎂基六鋁酸鑭噴涂粉末的制備[J].材料工程,2006(7): 14~18.
[39]姚華東,徐強(qiáng).SrxLal_xMgAl11019_0.5x熱障涂層材料的固相合成[J].人工晶體學(xué)報(bào),2009,38( Sl):234~237.
[40]Saravanan S,Hari S G, Jayaram V, et al.Synthesis andcharacterization of Y3Al5 012 and Zr02- Y203 thermal barriercoatings by combustion spray pyrolysis[J]. Surface andCoatings Technology,2008,202(19):4653~4659.
[41]Maekawa T,Kurosaki K,Yamanaka S.Thermophysical properties of BaY204:A new candidate material for thermal barrier coatings[J].Materials Letters,2007,61( 11/12):2303~2306.
[42]Kurosaki K, Tanaka T,Maekawa T,et al.Thermophysicalproperties of SrY204[J].Joumal of Alloys and Compounds,2005,398 (1/2):304~308. [編校:王宇]










